Stoichiometry and Conformation of the Azacrown Moiety in Sodium Complexes of Azacrown Ethers. A Raman/IR Spectroscopic Study. Part II: Complexes of 4,13-Diaza-15-crown-5

ISAO SARAOKA ${ }^{\text {a }}$, SHINOBU KATO ${ }^{\text {a }}$, TAKAYUKI CHUJO ${ }^{a}$, HIROYASU SATO ${ }^{\text {a,b,* }}$ KOICHI FUKUHARA ${ }^{\text {c }}$ and HIROATSU MATSUURA ${ }^{c}$
${ }^{2}$ Department of Chemistry for Materials, Faculty of Engineering, Mi'e University, Tsu 514, Japan.
${ }^{\mathrm{b}}$ Institute for Molecular Science, Myodaiji, Okazaki 444, Japan.
${ }^{\text {c }}$ Department of Chemistry, Faculty of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 724, Japan.

(Received in final form: 5 October 1994)

Abstract

Diaza-15-crown-5 and three of its sodium complexes (bromide, iodide and thiocyanate) were studied using Raman and \mathbb{R} spectroscopy and normal coordinate calculations, following the corresponding study on the sodium complexes of 4,13-diaza-18-crown-6 in the preceding paper. Complex formation was again accompanied by a characteristic shift of the bands, especially of those in the $800-900 \mathrm{~cm}^{-1}$ region. The complexes of $4-13$-diaza-15-crown- 5 were distinct from those of 4-13-diaza-18-crown-6, in that both of the bands at 830 and $890 \mathrm{~cm}^{-1}$ of the parent azacrown were affected on complex formation and in that only the $1: 1$ complex was formed. Normal mode calculations were made to predict conformations of the azacrown ring of the parent 4,13-diaza-15-crown- 5 and its sodium complexes. Attention was paid to the different extent of mismatch in size of a sodium ion and azacrown cavities.

Key words: Azacrown ether, Sodium complex, Conformation, Raman/IR spectra, Normal mode calculations

1. Introduction

The preceding paper [1] presented a Raman/IR spectroscopic study on sodium complexes of 1,7,10,16-tetraoxa-4,13-diazacyclooctadecane (4,13-diaza-18-crown-6, abbreviated as $\mathrm{A}_{2} 18 \mathrm{C} 6$). This revealed a rather complex conformational change of the azacrown ring on complex formation, which has been attributed to the high degrees of motional freedom of the ring due to the 'mismatch' in size of a sodium ion and the azacrown ring. The companion azacrown, 1,7,10-trioxa-4,13-diazacyclopentadecane (4,13-diaza-15-crown-5, abbreviated as $\mathrm{A}_{2} 15 \mathrm{C} 5$) has a smaller cavity which fits a sodium ion much better than A_{2} 18C6. In the present

[^0]

Fig. 1. Raman spectra of the $\mathrm{NaBr}-\mathrm{A}_{2} 15 \mathrm{C} 5$ system for various [NaBr$] /\left[\mathrm{A}_{2} 15 \mathrm{C} 5\right]$ ratios. (a) $\mathrm{A}_{2} 15 \mathrm{C} 5$, (b)-(g) $[\mathrm{NaBr}] /\left[\mathrm{A}_{2} 15 \mathrm{C} 5\right]=0.25,0.5,0.75,1.0,1.5$, and 2.0 , respectively.
paper we present a Raman/IR spectroscopic study on $\mathrm{A}_{2} 15 \mathrm{C} 5$ and its three sodium complexes (bromide, iodide and thiocyanate). In contrast to the case of A_{2} 18C6, no crystal structure has been reported for $\mathrm{A}_{2} 15 \mathrm{C} 5$. Normal mode calculations have therefore been performed to predict conformations of the azacrown ring in the parent azacrown and in the sodium complexes. A different approach from the case of $\mathrm{A}_{2} 18 \mathrm{C} 6$ was adopted in the calculations.

2. Experimental

$\mathrm{A}_{2} 15 \mathrm{C} 5$ from Merck was recrystallized from n-heptane. All other experimental procedures were essentially the same as those for the $\mathrm{A}_{2} 18 \mathrm{C} 6$ complexes, as reported in the preceding paper [1].

Fig. 2. Raman spectra of the $\mathrm{NaI}-\mathrm{A}_{2} 15 \mathrm{C} 5$ system for various $[\mathrm{NaI}] /\left[\mathrm{A}_{2} 15 \mathrm{C} 5\right]$ ratios. (a) $\mathrm{A}_{2} 15 \mathrm{C} 5$, (b)-(g) $[\mathrm{NaI}] /\left[\mathrm{A}_{2} 15 \mathrm{C} 5\right]=0.25,0.5,0.75,1.0,1.5$, and 2.0 , respectively.

3. Experimental Results

The Raman spectra of the $\mathrm{NaBr}, \mathrm{NaI}$, and NaSCN complexes of $\mathrm{A}_{2} 15 \mathrm{C} 5$ are shown in Figures 1, 2, and 3, respectively. The positions of the Raman and IR bands are given in Table I and Figure 4. The band positions are all similar in the three complexes, although the difference in relative band intensities and the presence of extra bands due to the SCN moiety in the NaSCN complex give a differentlooking profile for the NaSCN complex in comparison with the other two. The most prominent feature among these spectra is the appearance of a sharp band near $850 \mathrm{~cm}^{-1}$ on complex formation, at the expense of the bands of the parent azacrown near 890 and $830 \mathrm{~cm}^{-1}$. This is distinct from the A_{2} 18C6 cases reported in Part I [1], in which only the $890 \mathrm{~cm}^{-1}$ band decreases in intensity. The spectral

Fig. 3. Raman spectra of the $\mathrm{NaSCN}-\mathrm{A}_{2} 15 \mathrm{C} 5$ system for various [NaSCN$] /\left[\mathrm{A}_{2} 15 \mathrm{C} 5\right]$ ratios. (a) $\mathrm{A}_{2} 15 \mathrm{C} 5,(\mathrm{~b})-(\mathrm{g})[\mathrm{NaSCN}] /\left[\mathrm{A}_{2} 15 \mathrm{C} 5\right]=0.25,0.5,0.75,1.0,1.5$, and 2.0 , respectively.
change levels off at a salt/azacrown ratio of unity, indicating the formation of $1: 1$ complexes.

3.1. NORMAL COORDINATE CALCULATIONS

Normal coordinate calculations were done using the MVIB program [2] to predict the conformations of parent and complexed $\mathrm{A}_{2} 15 \mathrm{C} 5$. No crystal structure analyses have been reported for either of these compounds. We tried to deduce local conformations of the azacrown ring in the parent compound and the complexes from the distributions of vibrational bands. A different approach from the case of the $\mathrm{A}_{2} 18 \mathrm{C} 6$ complexes was adopted here. Matsuura et al. [3] have used model compounds $\mathrm{CH}_{3}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{n} \mathrm{OCH}_{3}$ ($n=2,3$ and 6) to establish such a relationship for oxyethylene chains. We used a model compound $\mathrm{CH}_{3} \mathrm{O}-\mathrm{CH}_{2}-$

TABLE I. Observed wavenumbers (cm^{-1}) and vibrational assignments for parent $\mathrm{A}_{2} 15 \mathrm{C} 5$ and its $\mathrm{NaBr}, \mathrm{NaI}$ and $\mathrm{NaSCN}(1: 1)$ complexes.

$\mathrm{A}_{2} 15 \mathrm{C} 5$		NaBr		NaI		NaSCN ${ }^{\text {a }}$		Assignments
R	IR	R	IR	R	IR	R	IR	
1327 vw	1330 m		1332 s		1331 m		1332 m	CH_{2} wag
					1315 w		1310 vw	CH_{2} wag
$\begin{aligned} & 1295 \mathrm{sh} \\ & 1289 \mathrm{w} \end{aligned}$								CH_{2} tw
		1301 vw		1296 sh		1294 w		CH_{2} tw
	1270 w		1281w		1275 m		1279 m	CH_{2} tw
		1274 w		1276 sh		1271 s		CH_{2} tw
		1268 w		1266 sh				CH_{2} tw
		1264 w		1260 m	1260 m	1260 sh	1262 m	CH_{2} tw
	1233 m	1256 w	1240 w		1233 m		1233 w	CH_{2} tw
$\begin{aligned} & 1236 \mathrm{~m} \\ & 1216 \mathrm{w} \end{aligned}$		1238 vw				1231 w		CH_{2} tw
					1205 vw		1215 w	CH_{2} tw
	1199 vw				1191 vw		1190 vw	CH_{2} tw
		1172 w		1172 vw	1152 sh	1163 w		$\mathrm{CC}-\mathrm{NC}$ str
1151 m							1153 m	$\mathrm{CC}-\mathrm{NC} \mathrm{str}$
		1136 w		1136 m		1134 m		CH_{2} rock
	1107 vs		1100 vs	1100 vw	1103 vs		1100 vs	CC--OC str
				1090 vw				$\mathrm{CC}-\mathrm{OC} \mathrm{str}$
	1078 sh				1080 vs	1070 w	1084 vs	CH_{2} rock
			1056 sh	1050 vw	1070 sh	1063 s	1074 vs	$\mathrm{CC}-\mathrm{OC} \mathrm{str}$
	958 w			959 vw		959 vw		$\mathrm{OC}-\mathrm{CO} \mathrm{str}$
940 m				943 vw		935 w		CH_{2} rock
930 vw	930 w	942 vs	941 s	926 vw	935 s		948 s	CH_{2} rock
925 vw								CH_{2} rock
							910 m	$\mathrm{OC}-\mathrm{CO}$ str
		911 w		909 w		918 w		CH_{2} rock
893 s	900 vw			896 vw		896 w		$\mathrm{CC}-\mathrm{OC} \mathrm{str}$
891 sh					875 vw		882 s	CC--OC str
832 m		853 s		852 s		854 s		$\mathrm{CC}-\mathrm{OC} \mathrm{str}$
	828 s		845 w	850 sh	844 m		847 w	CC--OC str
818 w			815 w		806 m	816 sh	809 sh	$\mathrm{CC}-\mathrm{NC} \mathrm{str}$
810 m		$\begin{aligned} & 813 \mathrm{~m} \\ & 782 \mathrm{w} \end{aligned}$		810 m		812 W	800 sh	$\mathrm{CC}-\mathrm{NC} \mathrm{str}$
				794 vw		788 m	780 sh	NH para bend
			767 w		745 m			?
				579 vs		579 vw	570 w	CCO def
		555 vw				556 vw	545 w	CCO def
547 vw		551 vw			517 w			CCO def
352 vw						384 vw		$\mathrm{CCN}, \mathrm{CCO}$ def
334 w				336 vw		358 vw		CCO def
329 sh		320 w						
310 w		308 m		308 w		309 s		OC-- CO tors
288 w						304 sh		$\mathrm{OC}-\mathrm{CO}$ tors

[^1]

Fig. 4. Positions of the observed bands for $\mathrm{A}_{2} 15 \mathrm{C} 5$ (a) and its $\mathrm{NaBr}(\mathrm{b}), \mathrm{NaI}(\mathrm{c})$ and $\mathrm{NaSCN}(\mathrm{d})$ complexes. Solid and broken lines show Raman and IR bands, respectively.
$\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OCH}_{3}$ to perform a similar analysis of the aza-compound. Calculations were done for 214 conformations, 70 of which are shown in Figure 5, in which positions of vibrational bands are plotted for these conformations. A glance at the figure tells us that the distributions of bands in the $850-1050 \mathrm{~cm}^{-1}$ region, where $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ skeletal stretching vibrations occur, are very sensitive to local conformations. We can extract useful information on the relationship between local conformation and distribution of bands. Some of these interrelations are collected in Table II, in which characteristic wavenumbers of vibrational bands are given for various local conformations for the $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ and $\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}$ moieties. In the following, we discuss the conformation of the azacrown moiety on the basis of the derived interrelationships. One has to be careful in these analyses, since a variety of different local conformations can give vibrational bands in similar regions. The conformations predicted are subject to further examinations for the establishment.

a. Parent $A_{2} 15 C 5$

The distribution of bands in the observed spectrum (see Figure 4(a)) is characterized by the presence of a group of bands near $940 \mathrm{~cm}^{-1}$ and open windows on both sides. On the higher wavenumber side, bands appear at 1216, 1330 and 1360

Fig. 5. Positions of the bands calculated for various conformations of the model compound $\mathrm{CH}_{3} \mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OCH}_{3}$. T, G, H, S, K and C stand for trans, gauche ${ }^{+}$, gauche ${ }^{-}$, skew ${ }^{+}$, skew ${ }^{-}$and cis, respectively. 70 of 214 calculated conformations are shown. For arrows and double arrows, see text.
cm^{-1}. Comparison with calculated distributions of the bands (Figure 5) tells us that these characteristics are realized, for example, by the conformations designated by arrows. When we extract features common to these, we obtain

and

Consulting Table II and a similar table (Table I) in Ref. [3], we have additional, though less certain, relationships (G stands for either G or H, x either for T, G, or H):

Gxxx (C-C-N-C-C) from $810(\mathrm{R})$ and $1216(\mathrm{R}) \mathrm{cm}^{-1}$,
xTxx (C-C-N-C-C) from 1107 (IR) cm^{-1},
$x G x(\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O})$ from $893(\mathrm{R})$ and $900(\mathrm{IR}) \mathrm{cm}^{-1}$,
Txx (O-C-C-O) from $1289(\mathrm{R})$ and $1330(\mathrm{IR}) \mathrm{cm}^{-1}$, and

TABLE II. Position of the bands characteristic to various local conformations of the $\mathrm{A}_{2} 15 \mathrm{C} 5$ ring. ${ }^{\text {a }}$

Position of bands (cm^{-1})	Conformation	Position of bands (cm^{-1})	Conformation
1370-1360	xT-Tx	1040-1035	TG--Tx
1360-1345	$\mathrm{xG}-\mathrm{Tx}$	1030-1025	TG-Tx
~ 1325	GT-TG	1025-1020	TT-TT
1320-1310	$\mathrm{xT}-\mathrm{Tx}$	1020-1015	TT-GG
1310-1300	$\mathrm{xG}-\mathrm{Tx}$	1015-1010	TT-TT
1250-1245	$x G-x x$	1010-1000	Tx-Gx
1230-1220	Gx-xx	~ 995	GG-TT
~ 1180	TT-TT	990-980	TG-TT
~ 1180	TT-GT	~ 970	TG-GT
~ 1170	GG-GG	~ 960	TG-TT
1180-1150	Tx-xx	~945	TG-GT
~ 1150	GG-GG	~ 940	GT-TG
1150-1130	TT-xx	940-935	TG-TT
1140-1125	xG-TG	~ 935	TT-TT
~ 1120	xG-TG	930-925	GG-Tx
1120-1110	xT - xx	~ 920	GG-GG
~ 1105	$\mathrm{xT}-\mathrm{xx}$	~ 905	Gx-TT
~ 1100	TT-GG	900-885	Tx-xG
~ 1095	TG-GT	875-870	Tx-xG
~ 1085	GG-TG	870-855	TT-GG
~ 1085	TG-GT	~ 855	TG-GG
1100-1080	Tx—Tx	855-850	TT-TG
1065-1060	GT-xx	850-840	TG-TG
1055-1050	GG-TG	835-820	GG-xx
1050-1040	TT-Tx	~ 815	Gx-xx
~ 1040	GG-GG		

${ }^{\text {a }} \mathrm{XT}-\mathrm{Tx}$ shows the conformation for

The symbol x stands for either T, G, or H .
xGxxGx (O-C-C-N-C-C-O) from $832(\mathrm{R})$ and $828(\mathrm{IR}) \mathrm{cm}^{-1}$.
Given the condition of ring closure and assuming the highest attainable symmetry $\left(C_{2}\right)$, the following two conformations, E and F , are deduced as the most probable
candidates for the compound (note that G and H give equivalent local conformations in these cases):

and

These conformations are shown in Figures 6(a) and (b). However, the present analysis does not permit us to tell which of these two is to be chosen for the structure of parent $\mathrm{A}_{2} 15 \mathrm{C} 5$.

Intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond formation is known to be present in free 18C6 [4]. Similar C-H $\cdots \mathrm{O}$ and/or N—H \cdots O interactions may be operative in the present case. Normal coordinate calculations in the present study, however, cannot determine the direction of $\mathrm{N}-\mathrm{H}$ bonds. Examination of the hydrogen bond formation awaits future study.

b. Sodium Complexes

The band positions of the azacrown moiety in the $\mathrm{NaBr}, \mathrm{NaI}$ and NaSCN complexes are mutually similar (see Figures 4(b)-(d)). The most prominent feature in the observed spectra is the presence of bands near $850 \mathrm{~cm}^{-1}$, in place of those near 830 and $890 \mathrm{~cm}^{-1}$ for the parent compound.

The distributions of bands featuring these characteristics are best reproduced by the conformations with double arrows in Figure 5. Conditions of ring closure and smooth transformation from the free azacrown, together with additional relationships from Table II and those from Table I in Ref. [3]:

$$
\begin{aligned}
& \text { Gxxx }(\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{C}) \text { from } 813(\mathrm{R}) \text { and } 815(\mathrm{IR}) \mathrm{cm}^{-1}, \\
& \text { xTxx }(\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{C}) \text { from } 1100(\mathrm{IR}) \mathrm{cm}^{-1}, \\
& \text { xGx }(\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}) \text { from } 853(\mathrm{R}) \text { and } 845(\mathrm{IR}) \mathrm{cm}^{-1}, \\
& \text { TGT }(\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}) \text { from } 1238(\mathrm{R}) \mathrm{cm}^{-1} \text {, and } \\
& \text { Txx }(\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}) \text { from } 1332(\mathrm{R}) \mathrm{cm}^{-1}
\end{aligned}
$$

lead to the C_{2} structure

$$
\begin{gathered}
\mathrm{T} \text { G T T } \mathrm{C} \text { T T H T T C T T G T } \\
\mathrm{G}:-\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{C}-\mathrm{C}-
\end{gathered}
$$

as shown in Figure 7, as the most probable candidate for the conformation of the azacrown ring in the three sodium complexes.

The conformational change of the azacrown ring on complex formation of $\mathrm{A}_{2} 15 \mathrm{C} 5$ seems to be much smaller compared to that in the $\mathrm{A}_{2} 18 \mathrm{C} 6$ case. It is a natural conjecture to regard such a trend as reflecting the smaller extent of

(a)

(b)

Fig. 6. Projected images of two predicted molecular conformations of 4,13-diaza-15-crown-5.
mismatch in the size of a sodium ion and the cavity of $\mathrm{A}_{2} 15 \mathrm{C} 5$, compared to the case of $\mathrm{A}_{2} 18 \mathrm{C} 6$.

4. Conclusions

The parent azacrown and three sodium complexes (bromide, iodide and thiocyanate) of 4,13-diaza-15-crown-5 ($\mathrm{A}_{2} 15 \mathrm{C} 5$) have been studied by Raman/IR spectroscopy and normal coordinate calculations. Only $1: 1$ stoichiometry of the complex was found, in contrast to the case of 4-13-diaza-18-crown-6 ($\mathrm{A}_{2} 18 \mathrm{C} 6$) where both $1: 1$ and $2: 1$ complexes were found. Normal coordinate calculations predict the conformations of the azacrown moiety in the parent compound and sodium complexes. The conformational change of the azacrown ring on complex

Fig. 7. Projected image of a predicted molecular conformation of the azacrown ring in the $1: 1$ complex of $\mathrm{NaX} / \mathrm{A}_{2} 15 \mathrm{C} 5$, where $\mathrm{X}=\mathrm{Br}, \mathrm{I}$, or SCN .
formation with a sodium ion seems to be smaller for $\mathrm{A}_{2} 15 \mathrm{C} 5$ as compared to $\mathrm{A}_{2} 18 \mathrm{C} 6$, reflecting the extent of mismatch in the size of the azacrown ring and a sodium ion.

Acknowledgment

The authors thank Miss Yae Minamimoto for assistance.

References

1. T. Chujo, I. Saraoka, S. Kato, H. Sato, K. Fukuhara, and H. Matsuura: J. Incl. Phenom. 22, 41 (this issue).
2. H. Matsuura, K. Fukuhara, K. Kaneko, and H. Yoshida: J. Mol. Struct. 265, 269 (1992).
3. H. Matsuura and K. Fukuhara: J. Polymer Sci., Part B, Polym. Phys. 24, 1383 (1986).
4. I. Goldberg: in J. L. Atwood, J. E. D. Davies and D. D. MacNicol (eds.), Complexes of Crown Ethers with Molecular Guests, Inclusion Compounds, Vol. 2, Ch. 9, Academic Press (1984), p. 284.

[^0]: * Author for correspondence.

[^1]: ${ }^{\text {a }}$ Bands of SCN appear at $746 \mathrm{~s}(\mathrm{R}), 730 \mathrm{w}$ and $460 \mathrm{w}(\mathrm{R}) \mathrm{cm}^{-1}$.

