Stoichiometry and Conformation of the Azacrown Moiety in Sodium Complexes of Azacrown Ethers. A Raman/IR Spectroscopic Study. Part II: Complexes of 4,13-Diaza-15-crown-5

ISAO SARAOKA^a, SHINOBU KATO^a, TAKAYUKI CHUJO^a, HIROYASU SATO^{a,b},* KOICHI FUKUHARA^c and HIROATSU MATSUURA^c

^aDepartment of Chemistry for Materials, Faculty of Engineering, Mi'e University, Tsu 514, Japan.

^bInstitute for Molecular Science, Myodaiji, Okazaki 444, Japan. ^cDepartment of Chemistry, Faculty of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 724, Japan.

(Received in final form: 5 October 1994)

Abstract. 4,13-Diaza-15-crown-5 and three of its sodium complexes (bromide, iodide and thiocyanate) were studied using Raman and IR spectroscopy and normal coordinate calculations, following the corresponding study on the sodium complexes of 4,13-diaza-18-crown-6 in the preceding paper. Complex formation was again accompanied by a characteristic shift of the bands, especially of those in the 800–900 cm⁻¹ region. The complexes of 4-13-diaza-15-crown-5 were distinct from those of 4-13-diaza-18-crown-6, in that both of the bands at 830 and 890 cm⁻¹ of the parent azacrown were affected on complex formation and in that only the 1 : 1 complex was formed. Normal mode calculations were made to predict conformations of the azacrown ring of the parent 4,13-diaza-15crown-5 and its sodium complexes. Attention was paid to the different extent of mismatch in size of a sodium ion and azacrown cavities.

Key words: Azacrown ether, Sodium complex, Conformation, Raman/IR spectra, Normal mode calculations

1. Introduction

The preceding paper [1] presented a Raman/IR spectroscopic study on sodium complexes of 1,7,10,16-tetraoxa-4,13-diazacyclooctadecane (4,13-diaza-18-crown-6, abbreviated as A₂18C6). This revealed a rather complex conformational change of the azacrown ring on complex formation, which has been attributed to the high degrees of motional freedom of the ring due to the 'mismatch' in size of a sodium ion and the azacrown ring. The companion azacrown, 1,7,10-trioxa-4,13-diazacyclopentadecane (4,13-diaza-15-crown-5, abbreviated as A₂15C5) has a smaller cavity which fits a sodium ion much better than A₂18C6. In the present

^{*} Author for correspondence.

Fig. 1. Raman spectra of the NaBr-A₂15C5 system for various [NaBr]/[A₂15C5] ratios. (a) A_215C5 , (b)-(g) [NaBr]/[A₂15C5] = 0.25, 0.5, 0.75, 1.0, 1.5, and 2.0, respectively.

paper we present a Raman/IR spectroscopic study on A_215C5 and its three sodium complexes (bromide, iodide and thiocyanate). In contrast to the case of A_218C6 , no crystal structure has been reported for A_215C5 . Normal mode calculations have therefore been performed to predict conformations of the azacrown ring in the parent azacrown and in the sodium complexes. A different approach from the case of A_218C6 was adopted in the calculations.

2. Experimental

 A_215C5 from Merck was recrystallized from *n*-heptane. All other experimental procedures were essentially the same as those for the A_218C6 complexes, as reported in the preceding paper [1].

Fig. 2. Raman spectra of the NaI–A₂15C5 system for various [NaI]/[A₂15C5] ratios. (a) A_215C5 , (b)–(g) [NaI]/[A₂15C5] = 0.25, 0.5, 0.75, 1.0, 1.5, and 2.0, respectively.

3. Experimental Results

The Raman spectra of the NaBr, NaI, and NaSCN complexes of A_215C5 are shown in Figures 1, 2, and 3, respectively. The positions of the Raman and IR bands are given in Table I and Figure 4. The band positions are all similar in the three complexes, although the difference in relative band intensities and the presence of extra bands due to the SCN moiety in the NaSCN complex give a differentlooking profile for the NaSCN complex in comparison with the other two. The most prominent feature among these spectra is the appearance of a sharp band near 850 cm⁻¹ on complex formation, at the expense of the bands of the parent azacrown near 890 and 830 cm⁻¹. This is distinct from the A_218C6 cases reported in Part I [1], in which only the 890 cm⁻¹ band decreases in intensity. The spectral

Fig. 3. Raman spectra of the NaSCN- A_215C5 system for various [NaSCN]/[A_215C5] ratios. (a) A_215C5 , (b)-(g) [NaSCN]/[A_215C5] = 0.25, 0.5, 0.75, 1.0, 1.5, and 2.0, respectively.

change levels off at a salt/azacrown ratio of unity, indicating the formation of 1:1 complexes.

3.1. NORMAL COORDINATE CALCULATIONS

Normal coordinate calculations were done using the MVIB program [2] to predict the conformations of parent and complexed A₂15C5. No crystal structure analyses have been reported for either of these compounds. We tried to deduce local conformations of the azacrown ring in the parent compound and the complexes from the distributions of vibrational bands. A different approach from the case of the A₂18C6 complexes was adopted here. Matsuura *et al.* [3] have used model compounds CH₃(OCH₂CH₂)_nOCH₃ (n = 2, 3 and 6) to establish such a relationship for oxyethylene chains. We used a model compound CH₃O—CH₂—

TABLE I. Observed wavenumbers (cm⁻¹) and vibrational assignments for parent A₂15C5 and its NaBr, NaI and NaSCN (1:1) complexes.

A ₂ 15C5		NaBr		NaI		NaSCN	a	Assignments
R	IR	R	IR	R	IR	R	IR	
1327 vw	1330 m		1332 s		1331 m		1332 m	CH ₂ wag
					1315 w		1310 vw	CH ₂ wag
1295 sh								CH ₂ tw
1289 w		1301 vw		1296 sh		1294 w		CH ₂ tw
	1270 w		1281w		1275 m		1279 m	CH ₂ tw
		1274 w		1276 sh		1271 s		CH ₂ tw
		1268 w		1266 sh				CH ₂ tw
		1264 w		1260 m	1260 m	1260 sh	1262 m	CH ₂ tw
	1233 m	1256 w	1240 w		1233 m		1233 w	CH ₂ tw
1236 m		1238 vw				1231 w		CH ₂ tw
1216 w					1205 vw		1215 w	CH ₂ tw
	1199 vw				1191 vw		1190 vw	CH ₂ tw
		1172 w		1172 vw	1152 sh	1163 w		CCNC str
1151 m							1153 m	CCNC str
		1136 w		1136 m		1134 m		CH ₂ rock
	1107 vs		1100 vs	1100 vw	1103 vs		1100 vs	CC-OC str
				1090 vw				CCOC str
	1078 sh				1080 vs	1070 w	1084 vs	CH ₂ rock
			1056 sh	1050 vw	1070 sh	1063 s	1074 vs	CCOC str
	958 w			959 vw		959 vw		OCCO str
940 m				943 vw		935 w		CH ₂ rock
930 vw	930 w	942 vs	941 s	926 vw	935 s		948 s	CH ₂ rock
925 vw								CH ₂ rock
							910 m	OCCO str
		911 w		909 w		918 w		CH2 rock
893 s	900 vw			896 vw		896 w		CCOC str
891 sh					875 vw		882 s	CCOC str
832 m		853 s		852 s		854 s		CCOC str
	828 s		845 w	850 sh	844 m		847 w	CC-OC str
818 w			815 w		806 m	816 sh	809 sh	CC-NC str
810 m		813 m		810 m		812 w	800 sh	CCNC str
		782 w		794 vw		788 m	780 sh	NH para bend
			767 w		745 m			?
				579 vs		579 vw	570 w	CCO def
		555 vw				556 vw	545 w	CCO def
547 vw		551 vw			517 w			CCO def
352 vw						384 vw		CCN, CCO def
334 w				336 vw		358 vw		CCO def
329 sh		320 w						
310 w		308 m		308 w		309 s		OC-CO tors
288 w						304 sh		OC-CO tors

^a Bands of SCN appear at 746 s (R), 730 w and 460 w (IR) cm⁻¹.

Fig. 4. Positions of the observed bands for $A_215C5(a)$ and its NaBr(b), NaI(c) and NaSCN(d) complexes. Solid and broken lines show Raman and IR bands, respectively.

CH₂—NH—CH₂—CH₂—O—CH₂—O—CH₂—OCH₃ to perform a similar analysis of the aza-compound. Calculations were done for 214 conformations, 70 of which are shown in Figure 5, in which positions of vibrational bands are plotted for these conformations. A glance at the figure tells us that the distributions of bands in the 850–1050 cm⁻¹ region, where C—C, C—O and C—N skeletal stretching vibrations occur, are very sensitive to local conformations. We can extract useful information on the relationship between local conformation and distribution of bands. Some of these interrelations are collected in Table II, in which characteristic wavenumbers of vibrational bands are given for various local conformations for the CH₂—CH₂—NH—CH₂—CH₂ and O—CH₂—CH₂—O moieties. In the following, we discuss the conformation of the azacrown moiety on the basis of the derived interrelationships. One has to be careful in these analyses, since a variety of different local conformations can give vibrational bands in similar regions. The conformations predicted are subject to further examinations for the establishment.

a. Parent A₂15C5

The distribution of bands in the observed spectrum (see Figure 4(a)) is characterized by the presence of a group of bands near 940 cm⁻¹ and open windows on both sides. On the higher wavenumber side, bands appear at 1216, 1330 and 1360

	r			-
	STITGTGT I	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	TGGTCGGGT
	TTTGGGT			TGGTCGTGT
	GITGIGI			TGTGCGTGT
	DOLTOCOT			TGTGCGGGT
	0710001			TGGGCGGGT
	HIIGIGI			1100000001
	HILGGGT	· · · · · · · · · · · · · · · · · · ·		101110101
	GTTGTTGT			101110001
	STIGTGGT	96 9 0 000 ° 08 9 07 6 099 9 9 9		TGGTTCGGT
T • • • • • • • • • • • • • • • • • •	GTTGTHHT [00 00 000 00 000 000 000 000 00		TGGTTCTGI
• • • • • • • • • • • • • • • • • • •	GGTGTGGT	e o con es de consos o es e de		TGTGTCTGT
0.0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GGTGTHHT	o oocon o aaaa oo a a	• • • •	TGTGTCGGT
	ентотинт	o ose ere an ann sa e e a	• • • • •	TGGGTCGGT
	STIGGIGT	e sancere e concore sou te		GGGTCTGT
	GGTGGTGT →	• • • • • • • • • • • • • • • •	• • • • • •	GTTGCTGT
	GETEGEET -			TGTTGCGGT
	UU*AGTGT			· TGGTGCGGT
		• • • • • • • • • • • • • • • • • • •		GGTGCTGT
				GTGGCTGT
	61616161			TATAACAAT
a h n c c a mo c c c c c c c c c c c c c c c c c c	61010001			TARCACCAT
m es co co a voco en re en e u e e e i	GGGIGGGT	0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0		TEEECTET
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	стотнист р	o a em p ve 6 00 800 8 0 80 m		
	стотнннт	το τ <u>μ</u> α 20 α 6600 α 46 44		101111001
a a a a a a a a a a a a a a a a a a a	GGGTHHHT	9 88 000000 00 5000 00 864 .	** * * * * *	IGGTITCGI
	GTGGGTGT		g a a ?	GIGIGIICGI
	GTGGGGGT	0 • • • • • • • • • • • • • • • •	••••	TGGGTTCGT
a	GGGGGGGT →	o e — — — — — — — — — — — — — — — — — —		TGTTGTCGT
0 5 5 0 00 0 00 000 00 00 000 0 0 0 0 0	τττοττη Ι	a a aca a co a co a co a co a co	• • • • •	• [GGTGTCGT
	TTTCTGTT			IGTTTGCGT
	ταταταττ Ι			TGGTTGCGT
	TTTCGTTT		• •	TGTGTGCGT
	TTTCGGTT			TGGGTGCGT
	TTTCGGTT	0 6 6 000 00 8 00 6 0 6 0 4		GTGGGCGT
	*6706677			+ IGGGGGGCGT
				al ITTTCTTTT
				al ITTTCTCT
	11000111			
1/00 1200 1000 800	1/.	00 1200	1000	800
1400 1200 1000 000	14	1200		0.00
Wavenumber / cm ⁻¹		Wavenumbei	'/ cm ⁻ '	
marchander / em			,	

Fig. 5. Positions of the bands calculated for various conformations of the model compound $CH_3O-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-OCH_3$. T, G, H, S, K and C stand for *trans*, *gauche⁺*, *gauche⁻*, *skew⁺*, *skew⁻* and *cis*, respectively. 70 of 214 calculated conformations are shown. For arrows and double arrows, see text.

 cm^{-1} . Comparison with calculated distributions of the bands (Figure 5) tells us that these characteristics are realized, for example, by the conformations designated by arrows. When we extract features common to these, we obtain

and

Consulting Table II and a similar table (Table I) in Ref. [3], we have additional, though less certain, relationships (G stands for either G or H, x either for T, G, or H):

Gxxx (C—C—N—C—C) from 810(R) and 1216(R) cm⁻¹, xTxx (C—C—N—C—C) from 1107(IR) cm⁻¹, xGx (O—C—C—O) from 893(R) and 900(IR) cm⁻¹, Txx (O—C—C—O) from 1289(R) and 1330(IR) cm⁻¹, and

Position of bands (cm ⁻¹)	Conformation	Position of bands (cm ⁻¹)	Conformation
1370-1360	xT—Tx	1040-1035	TG—Tx
1360–1345	xG—Tx	1030	TG—Tx
~1325	GT—TG	1025-1020	TT-TT
1320-1310	xT—Tx	1020-1015	TTGG
1310-1300	xG—Tx	1015-1010	TT-TT
1250-1245	xG—xx	1010-1000	TxGx
1230-1220	Gxxx	~995	GG—TT
~1180	TT—TT	990–980	TG—TT
~1180	TT-GT	~970	TG—GT
~1170	GG—GG	~960	TG—TT
1180-1150	Tx—xx	~945	TG—GT
~1150	GGGG	~940	GT—TG
1150-1130	TTxx	940–935	TG—TT
1140-1125	xG—TG	~935	TT—TT
~1120	xG—TG	930–925	GG—Tx
1120-1110	xT—xx	~920	GG—GG
~1105	xT—xx	~905	GxTT
~1100	TT-GG	900885	Tx-xG
~1095	TG—GT	875-870	TxxG
~1085	GG—TG	870-855	TT-GG
~1085	TGGT	~855	TG—GG
1100-1080	TxTx	855-850	TT—TG
1065-1060	GT—xx	850-840	TG—TG
1055-1050	GG—TG	835-820	GG—xx
1050-1040	TT—Tx	~815	Gx—xx
~1040	GG—GG		

TABLE II. Position of the bands characteristic to various local conformations of the $A_{2}15C5$ ring. a

^a xT—Tx shows the conformation for

$$\begin{array}{cccc} x & T & T & x \\ C & - & C & - & N & - & C & - & C \end{array}$$

The symbol x stands for either T, G, or H.

xGxxGx (O-C-C-N-C-O) from 832(R) and 828(IR) cm⁻¹.

Given the condition of ring closure and assuming the highest attainable symmetry (C_2) , the following two conformations, E and F, are deduced as the most probable

candidates for the compound (note that G and H give equivalent *local* conformations in these cases):

and

These conformations are shown in Figures 6(a) and (b). However, the present analysis does not permit us to tell which of these two is to be chosen for the structure of parent A₂15C5.

Intramolecular C— $H \cdot \cdot \cdot O$ hydrogen bond formation is known to be present in free 18C6 [4]. Similar C— $H \cdot \cdot \cdot O$ and/or N— $H \cdot \cdot \cdot O$ interactions may be operative in the present case. Normal coordinate calculations in the present study, however, cannot determine the direction of N—H bonds. Examination of the hydrogen bond formation awaits future study.

b. Sodium Complexes

The band positions of the azacrown moiety in the NaBr, NaI and NaSCN complexes are mutually similar (see Figures 4(b)–(d)). The most prominent feature in the observed spectra is the presence of bands near 850 cm⁻¹, in place of those near 830 and 890 cm⁻¹ for the parent compound.

The distributions of bands featuring these characteristics are best reproduced by the conformations with double arrows in Figure 5. Conditions of ring closure and smooth transformation from the free azacrown, together with additional relationships from Table II and those from Table I in Ref. [3]:

Gxxx (C—C—N—C—C) from 813(R) and 815(IR) cm⁻¹, xTxx (C—C—N—C—C) from 1100(IR) cm⁻¹, xGx (O—C—C—O) from 853(R) and 845(IR) cm⁻¹, TGT (O—C—C—O) from 1238(R) cm⁻¹, and Txx (O—C—C—O) from 1332(IR) cm⁻¹

lead to the C_2 structure

as shown in Figure 7, as the most probable candidate for the conformation of the azacrown ring in the three sodium complexes.

The conformational change of the azacrown ring on complex formation of $A_{2}15C5$ seems to be much smaller compared to that in the $A_{2}18C6$ case. It is a natural conjecture to regard such a trend as reflecting the smaller extent of

Fig. 6. Projected images of two predicted molecular conformations of 4,13-diaza-15-crown-5.

mismatch in the size of a sodium ion and the cavity of A_215C5 , compared to the case of A_218C6 .

4. Conclusions

The parent azacrown and three sodium complexes (bromide, iodide and thiocyanate) of 4,13-diaza-15-crown-5 (A₂15C5) have been studied by Raman/IR spectroscopy and normal coordinate calculations. Only 1:1 stoichiometry of the complex was found, in contrast to the case of 4-13-diaza-18-crown-6 (A₂18C6) where both 1:1 and 2:1 complexes were found. Normal coordinate calculations predict the conformations of the azacrown moiety in the parent compound and sodium complexes. The conformational change of the azacrown ring on complex

Fig. 7. Projected image of a predicted molecular conformation of the azacrown ring in the 1:1 complex of NaX/A₂15C5, where X = Br, I, or SCN.

formation with a sodium ion seems to be smaller for A_215C5 as compared to A_218C6 , reflecting the extent of mismatch in the size of the azacrown ring and a sodium ion.

Acknowledgment

The authors thank Miss Yae Minamimoto for assistance.

References

- 1. T. Chujo, I. Saraoka, S. Kato, H. Sato, K. Fukuhara, and H. Matsuura: J. Incl. Phenom. 22, 41 (this issue).
- 2. H. Matsuura, K. Fukuhara, K. Kaneko, and H. Yoshida: J. Mol. Struct. 265, 269 (1992).
- 3. H. Matsuura and K. Fukuhara: J. Polymer Sci., Part B, Polym. Phys. 24, 1383 (1986).
- 4. I. Goldberg: in J. L. Atwood, J. E. D. Davies and D. D. MacNicol (eds.), *Complexes of Crown Ethers with Molecular Guests, Inclusion Compounds*, Vol. 2, Ch. 9, Academic Press (1984), p. 284.